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Non-Uniform Memory Architecture

How To Distribute The Data ?

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}
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About Data Distribution

 Important aspect on cc-NUMA systems

 If not optimal, longer memory access times and hotspots

 OpenMP does not provide explicit support for cc-NUMA on first sight

 Placement comes from the Operating System

 This is therefore Operating System dependent

 OpenMP 5.0 introduced Memory Management to provide fine-grained control

 Windows, Linux and Solaris all use the “First Touch” placement policy by default

 May be possible to override default (check the docs)
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Non-Uniform Memory Architecture

 Serial code: all array elements are allocated

in the memory of the NUMA node

containing the core executing this thread

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}
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Non-Uniform Memory Architecture

 First Touch w/ parallel code: all array elements are

allocated in the memory of the NUMA node containing

the core executing the thread initializing the respective

partition
double* A;

A = (double*)

malloc(N * sizeof(double));

omp_set_num_threads(4);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}
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Get Info on the System Topology

 Before you design a strategy for thread binding, you should have a basic understanding

of the system topology. Please use one of the following options on a target machine:

 Intel MPI‘s cpuinfo tool

 module switch openmpi intelmpi

 cpuinfo

 Delivers information about the number of sockets (= packages) and the mapping of processor ids used

by the operating system to cpu cores.

 hwlocs‘tools

 lstopo (command line: hwloc-ls)

 Displays a graphical representation of the system topology, separated into NUMA nodes, along with the

mapping of processor ids used by the operating system to cpu cores and additional info on caches.
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Decide for Binding Strategy

 Selecting the „right“ binding strategy depends not only on the topology, but also on the

characteristics of your application.

 Putting threads far apart, i.e. on different sockets

 May improve the aggregated memory bandwidth available to your application

 May improve the combined cache size available to your application

 May decrease performance of synchronization constructs

 Putting threads close together, i.e. on two adjacent cores which possibly shared some caches

 May improve performance of synchronization constructs

 May decrease the available memory bandwidth and cache size

 If you are unsure, just try a few options and then select the best one.



Introduction to OpenMP INNOVATION THROUGH COOPERATION.

OpenMP 4.0: Places + Binding Policies (1/2)

 Define OpenMP Places

 set of OpenMP threads running on one or more processors

 can be defined by the user, i.e. OMP_PLACES=cores

 Define a set of OpenMP Thread Affinity Policies

 SPREAD: spread OpenMP threads evenly among the places

 CLOSE: pack OpenMP threads near master thread

 MASTER: collocate OpenMP thread with master thread

 Goals

 user has a way to specify where to execute OpenMP threads for

 locality between OpenMP threads / less false sharing / memory bandwidth
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Places

 Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

 Abstract names for OMP_PLACES:

 threads: Each place corresponds to a single hardware thread on the target machine.

 cores: Each place corresponds to a single core (having one or more hardware threads) on the 
target machine.

 sockets: Each place corresponds to a single socket (consisting of one or more cores) on the
target machine.

 ll_caches (5.1): Each place corresponds to a set of cores that share the last level cache.

 numa_domains (5.1): Each places corresponds to a set of cores for which their closest memory 
is: the same memory; and at a similar distance from the cores.

p0 p1 p2 p3 p4 p5 p6 p7
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OpenMP 4.0: Places + Binding Policies (2/2)

 Example‘s Objective:

 separate cores for outer loop and near cores for inner loop

 Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close)

 spread creates partition, compact binds threads within respective partition

OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4   = cores

#pragma omp parallel proc_bind(spread) num_threads(4)

#pragma omp parallel proc_bind(close) num_threads(4)

 Example

 initial

 spread 4

 close 4

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7
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Serial vs. Parallel Initialization

 Performance of OpenMP-parallel STREAM vector assignment measured on 2-socket 

Intel® Xeon® X5675 („Westmere“) using Intel® Composer XE 2013 compiler with

different thread binding options:
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Questions?


