
Introduction to OpenMP THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

Dr. Christian Terboven

Introduction to OpenMP

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Data Scoping

Introduction to OpenMP

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Scoping Rules

 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared for Parallel Region, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for the task or each thread executing the

construct

 firstprivate: Initialization with the value before encountering the construct

 lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Scoping Rules

 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared for Parallel Region, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for the task or each thread executing the

construct

 firstprivate: Initialization with the value before encountering the construct

 lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Tasks are

introduced

later

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Privatization of Global/Static Variables

 Global / static variables can be privatized with the threadprivate directive

 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

 TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Privatization of Global/Static Variables

 Global / static variables can be privatized with the threadprivate directive

 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

 TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Back to our bad scaling example

C/C++

int i, s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

It‘s your turn: Make It Scale!

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < 99; i++)

{

s = s + a[i];

}

} // end parallel

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

The Reduction Clause

 In a reduction-operation the operator is applied to all variables in the list. The variables
have to be shared.

 reduction(operator:list)

 The result is provided in the associated reduction variable

 Possible reduction operators with initialization value:
+ (0), * (1), - (0), & (~0), | (0), && (1), || (0), ^ (0), min (largest

number), max (least number)

C/C++

int i, s = 0;

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Reduction Operations

int a=0;

.

.

#pragma omp parallel

#pragma omp for reduction(+:a)

for (int i=0; i<100; i++)

{

a+=i;

}

.

.

.

p
a
ra

lle
l re

g
io

n
s
e
ria

l p
a
rt

s
e
ria

l p
a
rt

a=0

a=0 a=0 a=0 a=0

300 925 1550 2175

local copies

for

computation

4950 reduction computes

final result in the

shared variable

update is written

to the shared

variable

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Questions?

