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Scoping Rules

 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared for Parallel Region, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for the task or each thread executing the 

construct

 firstprivate: Initialization with the value before encountering the construct

 lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared
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Privatization of Global/Static Variables

 Global / static variables can be privatized with the threadprivate directive

 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

 TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)
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Back to our bad scaling example

C/C++

int i, s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i];  }

}
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It‘s your turn: Make It Scale!

#pragma omp parallel              

{

#pragma omp for

for (i = 0; i < 99; i++)

{   

s  = s   + a[i];

}

} // end parallel

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do  

do i = 50, 74
s = s + a(i)

end do  

do i = 75, 99
s = s + a(i)

end do
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The Reduction Clause

 In a reduction-operation the operator is applied to all variables in the list. The variables 
have to be shared.

 reduction(operator:list)

 The result is provided in the associated reduction variable

 Possible reduction operators with initialization value:
+ (0), * (1), - (0), & (~0), | (0), && (1), || (0), ^ (0), min (largest 

number), max (least number)

C/C++

int i, s = 0;

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}
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Reduction Operations

int a=0;
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Questions?


